Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available February 26, 2026
- 
            Context.X-ray surveys combined with optical follow-up observations are used to generate complete flux-limited samples of the main X-ray emitting source classes. eROSITA on the Spectrum-Roentgen-Gamma mission provides sufficient sensitivity to build significantly enhanced samples of rare X-ray emitting sources. Aims.We strive to identify and classify compact white dwarf binaries, cataclysmic variables (CVs), and related objects, which were detected in the sky area of eFEDS, the eROSITA Final Equatorial Depths Survey, and they were observed in the plate program of SDSS-V. Methods.Compact white dwarf binaries were selected from spectra obtained in the early SDSS-V plate program. A dedicated set of SDSS plate observations were carried out in the eFEDS field, providing spectroscopic classifications for a significant fraction of the optically bright end (r< 22.5) of the X-ray sample. The identification and subclassification rests on visual inspections of the SDSS spectra, spectral variability, color-magnitude and color-color diagrams involving optical and X-ray fluxes, optical variability, and literature work. Results.Upon visual inspection of SDSS spectra and various auxiliary data products, we have identified 26 accreting compact white dwarf binaries (aCWDBs) in eFEDS, of which 24 are proven X-ray emitters. Among those 26 objects, there are 12 dwarf novae, three WZ Sge-like disk-accreting nonmagnetic CVs with low accretion rates, five likely nonmagnetic high accretion rate nova-like CVs, two magnetic CVs of the polar subcategory, and three double degenerates (AM CVn objects). Period bouncing candidates and magnetic systems are rarer than expected in this sample, but it is too small for a thorough statistical analysis. Fourteen of the systems are new discoveries, of which five are fainter than theGaiamagnitude limit. Thirteen aCWDBs have measured or estimated orbital periods, of which five were presented here. Through a Zeeman analysis, we revise the magnetic field estimate of the polar system J0926+0105, which is likely a low-field polar atB= 16 MG. We quantified the success of X-ray versus optical/UV selection of compact white dwarf binaries which will be relevant for the full SDSS-V survey. We also identified six white dwarf main sequence (WDMS) systems, among them there is one confirmed pre-CV at an orbital period of 17.6 h and another pre-CV candidate. Conclusions.This work presents successful initial work in building large samples of all kinds of accreting and X-ray emitting compact white dwarf binaries that will be continued over the full hemisphere in the years to come.more » « less
- 
            Abstract Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetisation patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using superconducting quantum interference devices, spin centre and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoscale magnetic resonance imaging. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of the development of magnetic imaging technologies for the upcoming decade with a focus on physics, materials science, and chemistry of planar, three-dimensional and geometrically curved objects of different material classes including two-dimensional materials, complex oxides, semi-metals, multiferroics, skyrmions, antiferromagnets, frustrated magnets, magnetic molecules/nanoparticles, ionic conductors, superconductors, spintronic and spinorbitronic materials.more » « less
- 
            Academic Editor: García-Aracil, Adela (Ed.)This is the first of two sequential papers describing the design and first-year implementation of a collaborative participatory action research effort between Sociedad Latina, a youth serving organization in Boston, Massachusetts, and Boston University. The collaboration aimed to develop and deliver a combined STEM and career development set of lessons for middle school Latinx youth. In the first paper, life design and the U.N. Sustainable Development Goals are described in relation to the rationale and the design of the career development intervention strategy that aims to help middle school youth discover the ways that learning advanced-STEM skills expand future decent work opportunities both within STEM and outside STEM, ultimately leading to an outcome of well-being and sustainable communities. In addition to providing evidence of career development intervention strategies, a qualitative analysis of the collaboration is described. The second paper will discuss two additional frameworks that guided the design and implementation of our work. As an example of translational research, the paper will provide larger national and regional contexts by describing system level career development interventions underway using Bronfenbrenner’s bioecological and person–process–context–time frameworks.more » « less
- 
            Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available